Chapter 5 Appendix

Ω function. Theorem 2 is capable of generalization. If f is an additive function then

$$
f(n)=\sum_{p^{a} \| n} f\left(p^{a}\right) .
$$

Thus

$$
\sum_{n \leq x} f(n)=\sum_{n \leq x} \sum_{p^{a} \| n} f\left(p^{a}\right)=\sum_{p^{a} \leq x} f\left(p^{a}\right) \sum_{\substack{n \leq x \\ p^{a} \| n}} 1,
$$

having interchanged the summations. If $p^{a}| | n$ then $p^{a} \mid n$ but $p^{a+1} \nmid n$. So, to count the number of integers $n \leq x$ for which $p^{a} \| n$ we count the number with $p^{a} \mid n$ and subtract the number with $p^{a+1} \mid n$. That is,

$$
\sum_{\substack{n \leq x \\ p^{a} \| n}} 1=\sum_{\substack{n \leq x \\ p^{a} \mid n}} 1-\sum_{\substack{n \leq x \\ p^{a+1} \mid n}} 1=\left[\frac{x}{p^{a}}\right]-\left[\frac{x}{p^{a+1}}\right]=\frac{x}{p^{a}}-\frac{x}{p^{a+1}}+O(1) .
$$

Therefore

$$
\sum_{n \leq x} f(n)=x \sum_{p^{a} \leq x} \frac{f\left(p^{a}\right)}{p^{a}}\left(1-\frac{1}{p}\right)+O\left(\sum_{p^{a} \leq x}\left|f\left(p^{a}\right)\right|\right)
$$

We see here the main term in the next result.
Theorem 11 Turán-Kubilius For any additive function f we have

$$
\sum_{n \leq x}(f(n)-A(x)) \leq(2+o(1)) x B^{2}(x)
$$

with

$$
A(x)=\sum_{p^{n} \leq x} \frac{f\left(p^{n}\right)}{p^{n}}\left(1-\frac{1}{p}\right) \quad \text { and } \quad B^{2}(x)=\sum_{p^{n} \leq x} \frac{\left|f\left(p^{n}\right)\right|^{2}}{p^{n}}
$$

Example With $f=\Omega$ it is easily checked that

$$
\begin{aligned}
A(x) & =\sum_{p^{n} \leq x} \frac{n}{p^{n}}\left(1-\frac{1}{p}\right) \\
& =\sum_{p \leq x} \frac{1}{p}-\sum_{p \leq x} \frac{1}{p^{2}}+\sum_{\substack{p^{n} \leq x \\
n \geq 2}} \frac{n}{p^{n}}\left(1-\frac{1}{p}\right) \\
& =\log \log x+O(1),
\end{aligned}
$$

and

$$
B^{2}(x)=\sum_{p^{n} \leq x} \frac{n^{2}}{p^{n}}=\sum_{p \leq x} \frac{1}{p}+\sum_{\substack{p^{n} \leq x \\ n \geq 2}} \frac{n^{2}}{p^{n}}=\log \log x+O(1)
$$

Thus

Corollary 12

$$
\sum_{n \leq x}(\Omega(n)-\log \log x)^{2}=O(x \log \log x)
$$

As for the ω function the $\log \log x$ can be replaced by $\log \log n$:

$$
\sum_{3 \leq n \leq x}(\Omega(n)-\log \log n)^{2}=O(x \log \log x)
$$

This leads to the same conclusions but for $\Omega ; \Omega(n)$ has normal order $\log \log n$ and almost all integers n have $\log \log n$ prime divisors counted with multiplicity.

Probabilistic Number Theory The results in this short chapter were the start of probabilistic Number Theory. An important result of this theory was

Theorem 13 Erdos-Kac For all $\alpha \leq \beta$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x}\left\{n \leq x: \alpha \leq \frac{\omega(n)-\log \log n}{\sqrt{\log \log n}} \leq \beta\right\}=\frac{1}{\sqrt{2 \pi}} \int_{\alpha}^{\beta} e^{-t^{2} / 2} d t
$$

This says that the function

$$
\frac{\omega(n)-\log \log n}{\sqrt{\log \log n}}
$$

is normally distributed (in some sense) with mean $\log \log n$ and standard deviation $\sqrt{\log \log n}$.

