Chapter 5 Appendix

() function. Theorem 2 is capable of generalization. If f is an additive

function then
= f0")

p*||n
Thus
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having interchanged the summations. If p®||n then p®ln but p*™ { n. So,
to count the number of integers n < z for which p®||n we count the number
with p®|n and subtract the number with p®™|n. That is,

Siope 5 fE]- oo

n<x n<x n<z pa
pln ptin p*n
Therefore
f
D f)=a ) == +O| 210"
n<x pe<z pr<z

We see here the main term in the next result.

Theorem 11 Turdn-Kubilius For any additive function f we have
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Example With f = it is easily checked that
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with
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and
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Thus

Corollary 12

Z (Q(n) —loglogz)* = O (zloglog z) .

n<x

As for the w function the loglog x can be replaced by loglogn :

Z (Q(n) —loglogn)® = O (zloglog ) .

3<n<zx

This leads to the same conclusions but for ©; Q (n) has normal order log logn
and almost all integers n have log log n prime divisors counted with multiplic-
1ty.

Probabilistic Number Theory The results in this short chapter were the
start of probabilistic Number Theory. An important result of this theory was

Theorem 13 Erdos-Kac For all o < [3,
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This says that the function

w(n) — loglogn
Vvl1oglogn

is normally distributed (in some sense) with mean loglogn and standard

deviation +/log logn.




